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Abstract. We analyse theoretically the generation of second and higher harmonics for sodium clusters
deposited on an insulating surface. To this end, we use the time-dependent local-density approximation
solved on a three-dimensional grid. We explore the impact of the various laser parameters (intensity,
frequency, polarisation) on the efficiency of second harmonic generation. The success sensitively depends
on a proper tuning of these parameters. We find optimum conditions for which the laser frequency is
half the resonance frequency of the system, if the polarisation is directed orthogonal to the surface of the
substrate, and if the intensity is large but safely below the critical value for destruction of the electron
cloud.

PACS. 36.40.Vz Optical properties of clusters – 42.65.Ky Harmonic generation, frequency conversion

1 Introduction

Optical response is a key tool for the study of metal
clusters. It has intensively been exploited over the past
decades to analyse cluster structure and dynamics, for re-
views and monographs see [1–4]. The bulk of these for-
mer investigations has been concerned with the regime of
linear response. More recently, the technological develop-
ments have allowed to produce highly excited electronic
states, e.g. after excitation by highly charged ionic pro-
jectiles [5] or by irradiation with intense lasers [6]. This
regime of strong excitations opens worlds of new phe-
nomena. Strong ionisation renders the clusters Coulomb-
unstable and leads to fission or fragmentation [7,8]. A bit
more moderate external fields allow to resolve the detailed
emission patterns of photoelectrons [9], or the extraction
of the plasmon width from laser irradiation of deposited
clusters [10]. The theoretical tools for an efficient descrip-
tion of such situations can nevertheless still be found in
the realm of effective mean-field theories founded on the
Density Functional Theory (TDDFT) [11], pioneered by
the work of [12]. The practical implementation is then
done by means of the fully fledged time-dependent local-
density approximation (TDLDA) solved, without any lin-
earization, directly in the time domain [13,14]. It is the
simplest approach staying at the level of a local and adi-
abatic TDDFT, and this is the line we will pursue here.

Moderate electronic excitations are a fascinating field
of investigation for cluster science because they mix up
non linear effects to sizable traces of structural properties.
In the case of metal clusters a typical example for this in-

a e-mail: suraud@irsamc2.ups-tlse.fr

termediate regime is the search for harmonic generation
(Second Harmonic Generation, SHG) following laser irra-
diation. In the strictly linear regime, the cluster’s response
to an irradiation takes place exclusively at the excitation
frequency. With increasing laser intensity, an-harmonic ef-
fects quickly show up and lead to the appearance of side
peaks at integer multiples of the excitation frequency.
The strength of these peaks decreases with multiplicity
and the dominant process is usually frequency doubling,
called SHG. Beyond its mere interest as such, SHG in
clusters has been used for example to trace the impact
of intermediate excitations, in terms of Mie plasmon de-
cay [10]. There are also applications to frequency doubling
of laser beams, once particularly suited crystals are used.
First and elementary theoretical considerations on SHG
for metal clusters have been presented in [15]. It is the
aim of this paper to investigate SHG theoretically using
the more detailed TDLDA as a tool.

Most experiments devoted to SHG or SHG applica-
tions have been performed with deposited metal clusters
[10,16]. A technical reason is that this allows a higher den-
sity of clusters which then helps to gather a sufficiently
strong signal from the second harmonics. A physical rea-
son is that SHG requires broken reflection symmetry be-
cause only this allows that SHG transforms a squared
dipole excitation into one dipole signal, i.e. D̂2 −→ D̂.
That transition cannot be mediated by a reflection sym-
metric system because parity is then conserved, but D̂ has
negative parity while D̂2 has positive parity. Free clusters
are too symmetric, which can be seen from the fact that
their shapes contain usually only very small octupole (or
higher odd multipole) moments. Thus they produce only
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faint SHG, and even this may be completely wiped out by
destructive interference of the signals from the stochasti-
cally oriented clusters [17]. At a quantitative level, one has
to take into account furthermore the fact that the response
of a free cluster comes usually very close to harmonic vi-
brations, which adds a general suppression of higher har-
monics. A solid surface, however, represents a strong sym-
metry breaking, first, because it divides the space into two
distinct regions, and second, because the strong surface
interaction induces additional deformation of the cluster.
The breaking of reflection symmetry does also help to spoil
the “harmonicity” of the free response [18]. Clusters at-
tached to a surface are thus the ideal setup for producing
SHG. We will consider the case of metal clusters attached
to an insulating surface, in particular we take here as test
case a Na8 cluster on a NaCl substrate. This test case is
by far smaller than the clusters used in the actual mea-
surements which contain several thousands of ions [16].
This is, of course, a tribute to the technical limitations
of today’s TDLDA computations. But we expect that the
basic trends can be sufficiently well explored with this
manageable test case.

The paper is organized as follows. Section 2 is devoted
to a short survey of the theoretical model used to describe
deposited clusters and the tools of analysis of SHG. In
Section 3 we discuss typical results and explore the impact
of the laser parameters on the quality of the SHG response.
Some conclusions and perspectives are finally presented in
Section 4.

2 The framework

2.1 Description of the deposited clusters

In this paper we use the methods developed in [19] to de-
scribe the deposited cluster and its electronic dynamics.
We recall here briefly the essential ingredients. The treat-
ment is much simplified due to the fact that the NaCl
substrate remains essentially inert as shown by detailed
ab initio calculations [20]. The description can then be re-
duced to account only for the valence electrons and the
ions of the cluster itself. This was extensively investigated
in [19,21] and it was shown that the effect of the NaCl
substrate can indeed be incorporated into an appropriate
interface potential.

The valence electrons of the Na atoms of the cluster are
described by TDLDA. The single electron wavefunctions
ψα(r, t) thus follow the time-dependent Kohn-Sham equa-
tions [22] which are explicitly solved in real time, by pro-
jection onto an equidistant numerical grid [23]. The Kohn-
Sham potential acting on electrons is thus composed as

vKS(r, t) =
∫

d3r′
ρ(r′, t)
|r− r′| + vxc(r, t) + vpsp(r, t)

+vsurf(r, t) + eD̂·Elaser(r, t) (1)

where the first two terms describe the interacting electron
cloud of density ρ(r, t) and the other three terms the ex-
ternal influences. The vpsp term takes into account the

electron-(cluster)-ion interactions via pseudo-potentials.
The vsurf contribution mediates the interaction with the
substrate. And the last term describes the laser field, see
equation (2). Actually, we work here with the local spin-
density approximation (TD-LSDA) and for vxc we use
the spin-dependent parameterization of Gunnarsson and
Lundqvist [24]. The pseudopotential for vpsp can be cho-
sen as local [25]. We use here the parameterization of [19].
Finally, the interaction amongst the ions of the cluster
is the simple point-like Coulomb interaction. It does not
play a role in the present investigations because the ions
are considered to be frozen during laser excitation.

A few words are in place about the vsurf term. Elec-
trons and ions are coupled to the substrate by an interface
potential. Indeed the ab initio calculations of [20] have
shown that the substrate is only very little affected by the
attached cluster. There is a negligible charge transfer for
the adsorbed monomer, no signs for the formation of a
chemical bond, no overlap with substrate states and con-
sequently no hybridization. A simple ansatz hence consists
in mapping the ab initio results into an interface potential
with a few adjustable parameters. This potential incorpo-
rates the Coulomb forces of the substrate as well as the
surface polarisation due to the ad-atoms. It is adjusted
to the exact results [20] for one ad-atom and for the Na8

cluster on the surface. The emerging fit then reproduces
nicely all available other combinations of small Na clus-
ters on NaCl [19,21]. We thus continue along this line and
use the interface potential of [19] with the same set of pa-
rameters. Contributions to the SHG from the substrate
are hence neglected. This is probably a fair approxima-
tion because the pure surface without clusters has little
response at all in the considered frequency range.

2.2 Spectral analysis of SHG

Our deposited clusters are irradiated by laser fields which
we treat in the dipole approximation. We use linearly po-
larised lasers. The cluster is thus subject to an external,
time dependent, electric field

Elaser(r, t) = E0f(t) sin(ωlasert)u (2)

f(t) = cos2

(
t− Tpulse

Tpulse

π

2

)
where u labels the polarisation vector and ωlaser the fre-
quency of the laser. The intensity I of the laser fixes the
amplitude E0 of the exciting field (I ∝ E2

0) and the pulse
profile f(t) is here a cos2 pulse with FWHM = Tpulse =
50 fs. The electronic response is predominantly concen-
trated in the dipole mode, which can be accessed through
the dipole moment of electrons

D(t) = 〈er〉 = e

∫
ρ(r)r dr, (3)

where r is measured with respect to the centre-of-mass of
the cluster’s ions. In the strictly linear domain, the dipole
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response of an excited cluster is harmonic and propor-
tional to the exciting laser field Elaser. The proportion-
ality constant is just the coefficient (generally a tensor
in non-isotropic systems) of linear dynamical polarisabil-
ity α1, i.e. D(t) = <{α1(ωlaser)E0 exp (−iωlasert)} u. But
non linear effects couple to sidebands of multiple frequen-
cies and thus higher harmonics ∝ exp (−inωlasert) appear
in the dipole signal. The first sideband to be considered
lies at double frequency and is known as second harmonic
generation (SHG).

Practically, the analysis of the optical response, and
in particular of the SHG signal, is performed from real
time dynamics. We let the system evolve for twice the
laser FWHM (namely 100 fs), and record in time the
dipole moment. A Fourier transform of D(t) into the fre-
quency domain yields D̃(ω), from which one can read off
the dipole strength function in each direction as Si(ω) =
<{D̃i(ω)} and the power spectrum as Pi(ω) = |D̃i(ω)|2
(i ∈ {x, y, z}). The strength function is directly related to
the photo-absorption cross-section [26] and is well suited
to the domain of linear response. The power spectrum is
better adapted to analyse nonlinear effects, growth of dis-
sipation and transition to spectral chaos [27]. For details
on this kind of spectral analysis we refer the reader to [27].
Because by nature SHG is a non linear effect, we focus our
present analysis on the power spectrum.

2.3 On the choice of laser parameters

The laser pulse equation (2) has several free parameters,
frequency ωlaser, intensity I ∝ E2

0 , pulse profile and length
Tpulse, and polarisation u. They all have their impact on
SHG, which we will briefly discuss here in terms of general
arguments. The practical results in the next section will
then take up each dependence step by step as outlined
here.

We have chosen here a cos2 profile for the laser pulse.
This is good approximation to a Gaussian pulse and
as such has a high spectral selectivity. Additionally, it
switches off precisely at start and end (t = 2Tpulse) which
makes it very efficient for numerical simulations. The pulse
length is chosen rather short with Tpulse = 50 fs, similar to
experiments [16]. There are two reasons for it. First, one
needs sufficient intensities to study non-linear effects and
these are usually achieved by fs laser. Second, such short
analysing times allow to keep the ions frozen. For longer
pulses, ionic dynamics starts to mix with the laser excita-
tion and would make the picture much more complicated.

The laser frequency ωlaser plays, of course, a key role.
Former studies of irradiation of clusters by short intense
laser pulses have demonstrated the importance of reso-
nance with the Mie plasmon frequency ωplasmon, e.g. ef-
fects on ionisation [28] or field amplification [29]. The same
will continue to hold for SHG [10,16,30,31]. Preliminary
theoretical investigations of this question have been pre-
sented in [32]. It was shown there that SHG is particularly
pronounced when ωplasmon is involved in the entrance or
exit channel. A simple analytical estimate in a perturbed

Table 1. Geometrical characteristics of Na8 deposited on NaCl
for 2D ground state and 3D isomer. The first two columns
show the dimensionless multipole moments of the ionic distri-
bution as defined in equation (4). The last three columns show
the mean plasmon frequencies along the three principal cluster
axes. Note that in the case of the 3D isomer only the dominant
peak of the strongly Landau fragmented plasmons have been
indicated.

β20 β30 ωx (eV) ωy (eV) ωz (eV)

2D ground 0.86 0 1.7 2.4 3.54

state

3D isomer 0.07 0.24 2.65 2.65 2.65

harmonic oscillator model suggests that SHG is particu-
larly efficient if ωlaser = ωplasmon or if 2ωlaser = ωplasmon.
The latter case corresponds to the so-called SHG “into res-
onance” as the laser is tuned so that the second harmonics
exactly matches the plasmon resonance. It is the advanta-
geous choice because this allows to work with a lower laser
frequency which, in turn, reduces unwanted perturbations
by electron emission. We will discuss in the following re-
sults for both choices and one further case completely out
of resonance.

The next crucial parameter is the laser intensity I ∝
E2

0 . Indeed, SHG is a non-linear effect and requires suf-
ficient intensity to produce a reasonable signal. On the
other hand, very large intensities will perturb the system
too much and thus destroy the electron response which we
need for SHG. We thus expect that there is a window of
most favourable laser intensities for SHG.

Finally, the choice of polarisation should also be inves-
tigated. Mind that we are considering deposited clusters
in which there is a strong symmetry breaking through the
surface. One can thus easily imagine that the direction
perpendicular to the surface will not provide the same
SHG as the directions along the surface. This actually
also raises the question of cross talks between the various
directions. In the most general case, one has to assume
that the SHG response is a third order tensor. In practice,
we find that cross talk is usually small and that most of
the response is concentrated along the polarisation axis
of the laser. For simplicity, we have thus restricted our
investigations here to the on diagonal terms of the SHG
tensor.

3 Results

3.1 Na8 deposited on NaCl

Our test case is Na8 deposited on the insulating NaCl
surface. Two configurations will be considered. They are
illustrated in Figure 1. The strong attractive interface in-
teraction tries to pull all ions close to the surface, and thus
the ground state has a planar monolayer 2D structure, see
left part of Figure 1. As can be seen from Table 1, this
2D ground state configuration is strongly deformed and
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Na8 free-likeNa8 planar

Fig. 1. Key features of 2D ground state (left column) and 3D isomer (right column) of deposited Na8 on NaCl clusters. The
two upper panels display iso-density contour plots of electrons. The upper panel shows a cut through the surface and the middle
panel the distribution over the surface. The ions within the clusters are indicated by full squares, the Na ions of the substrate
by open circles, and the Cl ions by stars. The bottom panels show spectral properties. The dotted lines represent the spectrum
of (linear) dipole response along the z-axis and the full line is the spectrum of the response to a laser signal with frequency as
indicated and polarised along z-axis. Note that the laser frequencies have been chosen so that the second harmonics coincides
with the dominant Mie resonance.
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triaxial. The planar structure nevertheless yields negligi-
ble octupole moment. But the interface interaction pro-
duces enough asymmetry for SHG. The Na8 cluster has
a magic electron number (remind that free Na8 is close
to spherical). This “magicity” is so strong that it can re-
sist the flattening power of the interface and produces a
quasi spherical 3D isomer which is only little higher in en-
ergy (0.05 eV) than the 2D ground state. This 3D isomer
has virtually no quadrupole deformation but acquires a
strong octupole moment with its typical pear shape, see
right part of Figure 1. Complementing numbers are given
in Table 1. Note that the global deformation of the clus-
ters are expressed in terms of the dimensionless spherical
quadrupole and octupole moments

β20 =
4π
5N
〈r2Y20〉
〈r2〉 , β30 =

4π
7N
〈r3Y30〉
〈r3〉 · (4)

As is well known, deformed clusters exhibit different spec-
tra along different directions for simple geometric reasons
[1]. The present test cases have naturally three principal
axes: the normal (z) axis to the interface, and the x- and
y-axes, which follow the two crystal orientations, paral-
lel to the surface (see middle panels) [19]. Summarizing
the results of [19], we report in Table 1 the mean plas-
mon frequencies along these principal axes for both the
2D and 3D clusters. The 2D ground state exhibits three
well separated frequencies corresponding to the fact that
the three principal axes have very different lengths (the
longer the axis, the smaller the frequency). In turn the
mean frequencies of the “almost spherical” 3D isomer are
very close together. It is to be noted, however, that this
case is distinguished by a strong Landau fragmentation
of the plasmon resonances [19] which is due to the large
octupole deformation [18]. Moreover, the observed mean
frequency of the 3D isomer is red shifted as compared
to the Mie plasma frequency. This is an effect which ap-
pears already for free clusters and it can be related to
surface effects, particularly to the electronic spill-out [2].
Table 1 and subsequent discussion are thus complemented
by showing the dipole power spectra for the eigenmodes
along the z-axis in the lowest panels of Figure 1. One sees
clearly the well developed plasmon resonance and its frag-
mentation in the case of the 3D cluster.

Finally, the bottom panels of Figure 1 provide a first
demonstration of SHG. The full lines show the dipole
power spectra as results of laser excitation with the laser
parameters as indicated. The laser has been polarised,
in both cases, perpendicularly to the surface (i.e. in z-
direction) and the spectral analysis is performed along
the same z-axis. The laser frequencies have been tuned to
the most favourable case, namely such that 2ωlaser coin-
cides with the plasmon peak. And quite expectedly, we
see in both cases well developed SHG and higher har-
monics (multiple laser frequencies are indicated by ver-
tical lines). The first peak corresponds to the excitation
frequency ωlaser itself. The SHG signal is the second peak
(at 2ωlaser) and the higher harmonics follow. Note the very
good ratio of peak over background noise (105 for the di-
rect response, still about 104 for SHG). This proves that

Fig. 2. Influence of laser frequency on SHG response in the
case of the 2D ground state. The upper panel corresponds to
a laser frequency in resonance with the plasmon, the middle
panel to SHG into resonance and the lower panel to an arbi-
trary frequency unconnected to the plasmon. The laser inten-
sity is I = 1011 W cm−2 and polarisation is along z-axis in all
cases.

we have indeed successfully tuned the proper conditions
for SHG with the choice 2ωlaser = ωplasmon.

3.2 Dependence on laser frequency

The dependence of SHG on the laser frequency is illus-
trated in Figure 2 in the case of the 2D ground state. We
use here lasers polarised along z-axis in all presented cases
and look at SHG for 3 frequencies. In the upper panel
the laser frequency has been chosen in resonance with the
plasmon along z-axis (ωlaser = ωplasmon = 3.6 eV, Tab. 1),
while in the middle panel the laser frequency has been cho-
sen at half the plasmon frequency (so that the SHG signal
is into resonance). Finally the lowest panel displays a case
fully out of resonance (ωlaser = 1.4 eV). It is first interest-
ing to note that this latter case exhibits the most fuzzy
spectra. Because the laser frequency has no relation to the
plasmon we only see a marked peak at the laser frequency
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Fig. 3. Influence of laser intensity (as indicated in the figure)
on SHG response in the case of the 3D isomer. Intensities are
(in units of W/cm2): dotted = 1010, full = 1011, dashed = 1012.
The laser is polarised along a z-direction perpendicular to the
surface and the response is measured along the same direction.

and little beyond that. We are facing a typical off reso-
nance behaviour in which there is virtually no response of
the cluster of its own [28]. The two upper panels display
more interesting cases in terms of SHG and exhibit very
different behaviours. In the ωlaser = 3.6 eV case, the SHG
signal is strongly reduced with respect to the direct signal
(about a factor 20 000) which reflects the impact of the
plasmon in enhancing the electronic response. The laser
with frequency ωlaser = 1.8 eV, on the contrary exhibits
an enhanced SHG (in resonance with the plasmon) with
a much smaller reduction factor (only about a factor 100)
and higher harmonics also very clearly appear, all with
large signal over noise ratios. Note also that this latter
case exhibits the most narrow peaks. Finally it is interest-
ing to look at the electronic response along the principal
axes of the cluster perpendicular to the laser polarisation
(hence parallel to the surface). They are indicated on the
three panels of Figure 2 by dashed and dashed-dotted lines
and the respective power spectra have been normalized
with respect to each other according to the amplitudes of
the signals. In all cases, although one observes some cross
talks, the response remains admittedly vanishingly small,
perpendicularly to the laser polarisation.

3.3 Dependence on laser intensity

The impact of laser intensity on SHG is demonstrated for
the example of the 3D isomer in Figure 3. We have con-
sidered here three typical laser intensities, as indicated on
the figure. The laser polarisation has been chosen perpen-
dicular to the surface (z-axis) in all cases and we show the
dipole power also along this axis. The response along the

other axes (parallel to the surface) is very small (a few %)
and can be neglected here. As expected (see Sect. 2.3),
the SHG signal strongly depends on the laser intensity, in
particular in terms of the peak over noise ratio. We have
normalized all direct response (i.e. at ω = ωlaser) peaks
to the same height. Thus we can read off that the ratio of
SHG to the base harmonics grows proportional to I, as it
should be. It is now very tempting to enhance the yield
by arbitrarily increasing I. But the case with the highest
intensity in Figure 3 shows already a sizeable spreading of
the spectrum in the region of the second harmonics. This
happens because the high intensity perturbs the system
strongly, particularly by electron emission. Increasing the
intensity one more order of magnitude destroys the spec-
trum completely. The optimum working point is then lo-
cated at the largest intensity a safe bit below the intensity
where the strong perturbation of the system becomes ap-
parent and where the SHG signal is smeared out. For our
case, we can deduce from Figure 3 that this point shows
up at the intensity of I = 1011 W/cm2.

3.4 Dependence on laser polarisation

The last parameter to be varied is the laser polarisation
which also plays an important role due to the highly
anisotropic nature of our system. Excitation along the
three principal axes is illustrated in Figure 4 for the case of
the 2D ground state. Each figure corresponds to a differ-
ent direction for polarisation. The SHG signal is recorded
for each case along the axis in which the system had been
excited. Again, cross talk is small in all cases and not
further considered here. To establish comparable condi-
tions, we take the “optimal” intensity I = 1011 W/cm2

and choose the laser frequency ωlaser so that the second
harmonics exactly matches the plasmon along the polar-
isation axis. This leads to choose ωlaser = 1.77 eV along
z-axis, ωlaser = 1.2 eV along y-axis and ωlaser = 0.85 eV
along x-axis, following the results of Table 1. Figure 4
shows that there is a marked difference between transverse
(z-axis) and parallel (x- and y-axes) responses. The trans-
verse SHG is extremely clean with high peak over back-
ground ratios and several visible higher harmonics. On
the contrary, both parallel directions lead to more fuzzy
responses. The second harmonic can be clearly identified
in both cases but virtually no higher harmonic signal can
be spotted, in particular along x-axis. This huge differ-
ence is related to the fact that the strongest symmetry
breaking arises indeed in z-direction, orthogonal to the
surface. Symmetry breaking parallel to the surface (e.g.
by corrugation) does exist but is much smaller. The best
condition for SHG is thus polarisation orthogonal to the
surface which can practically be realised by arranging flat
angle of the laser beam with respect to the substrate.

4 Conclusion

In this paper we have employed the time-dependent local-
density approximation to investigate second harmonic
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Fig. 4. Influence of laser polarisation on SHG response in the
case of the 2D ground state. All laser irradiation have been
performed with SHG “into resonance” (see text), and thus cor-
respond to various laser frequencies for the different axes, as
indicated on the figure. Dashed lines correspond to the linear
response along the considered axis.

generation (SHG) in metal clusters deposited on an in-
sulating substrate. The actual test case was Na8 on NaCl.
The attachment to a surface breaks reflection symmetry
and thus enables SHG. This is precisely the situation in
the experimental verification of SHG on clusters [16]. But
our test case is, for technical reasons, much smaller than
those actually used in these experiments. Nonetheless, our
simple test system suffices for a first survey because the
principle effects should be independent of system size.

We have successively considered the role of the various
laser parameters. The pulse length was chosen very short
(50 fs) to avoid interference with ionic motion during laser
excitation and to simulate the experimental conditions
where high intensity is related to short pulses. The fre-
quency is most crucial. Optimal conditions are achieved if
the double frequency coincides with the Mie plasmon res-
onance of the cluster. Good SHG are also obtained if one
irradiates with the plasmon frequency. But this case pro-
duces relatively more electron emission and reaches earlier

the limit of strong perturbations. Systematic variation of
intensity I shows that the relative importance of the SHG
signal grows with I1. But the growth is limited very sud-
denly by a dissolution of the spectral signal because the
too intense laser field destroys the system from which the
second harmonics is to be generated. Concerning polarisa-
tion, it is the direction orthogonal to the surface which is
most efficient in SHG. And that is obvious because this is
the direction with the most pronounced symmetry break-
ing.

An open point remains the possible cross talk between
the excitations along the three principal axes. We find
that it is small but non-zero. This means that one has to
deal, in principle, with a second order tensor for linear
polarisability and a third order tensor for SHG giving rise
to further interesting effects as, e.g., optical activity. This
needs yet to be explored in quantitative detail.

The authors thank the french-german exchange program PRO-
COPE number 99074 and Institut Universitaire de France for
financial support during the realisation of this work.
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